• <nav id="ai48w"></nav>
    <menu id="ai48w"></menu>
  • <dd id="ai48w"></dd>
  • 文章詳情

    無人機高光譜內置推掃影像快速拼接方法

    日期:2022-12-06 02:09
    瀏覽次數:1606
    摘要: 高光譜遙感具有光譜分辨率高、波段范圍窄、圖譜合一、連續成像等特點,能夠區分出地物光譜的細微差別,探測到其他寬波段遙感無法探測的信息。因此,高光譜遙感在生態、大氣、海洋、農業、林業、礦業等諸多應用領域具有非常大的優勢。近年來隨著成像光譜儀硬件技術不斷發展,成像光譜儀的體積越來越小、重量越來越輕、成本越來越低,因而利用成像光譜儀獲取高光譜影像更為方便、快捷。隨著無人機技術的日益成熟,基于無人機平臺的新型遙感技術異軍突起,得到科研工作者的青睞,從而將成像光譜儀與無人機高度集成獲取地物無人...

      

     高光譜遙感具有光譜分辨率高、波段范圍窄、圖譜合一、連續成像等特點,能夠區分出地物光譜的細微差別,探測到其他寬波段遙感無法探測的信息。因此,高光譜遙感在生態、大氣、海洋、農業、林業、礦業等諸多應用領域具有非常大的優勢。近年來隨著成像光譜儀硬件技術不斷發展,成像光譜儀的體積越來越小、重量越來越輕、成本越來越低,因而利用成像光譜儀獲取高光譜影像更為方便、快捷。隨著無人機技術的日益成熟,基于無人機平臺的新型遙感技術異軍突起,得到科研工作者的青睞,從而將成像光譜儀與無人機高度集成獲取地物無人機成像高光譜影像成為新的研究熱點。

           然而由于無人機航拍受飛行高度,相機本身參數的影響,單張無人機影像所覆蓋的區域面積不大,需要對多張影像進行拼接,才能有效地覆蓋研究區域。無人機載高光譜影像圖幅較小,為每幅影像單獨添加控制點信息工作量大、耗時長,而對影像統一添加控制點信息將大大縮短工作時間,提高工作效率。近年來,學者們對無人機影像數據的拼接做了很多研究,主要方法有基于姿態參數(POS數據)的拼接、基于非特征的拼接和基于特征的拼接等,其中無人機影像的拼接大部分是針對RGB圖像或者多波段圖像,而針對無人機高光譜影像的拼接方法較少,特別是對于無人機高光譜內置推掃獲取的高光譜影像數據,目前還沒有研究者對其拼接方法進行研究。

           鑒于目前對無人機高光譜影像數據拼接技術存在的不足之處,本文旨在研究一種低空無人機載高光譜影像自動拼接方法,其具有易于實現、拼接精度高、光譜畸變小等優點,可實現無地面控制點的無人機載高光譜影像的自動拼接,以解決當前單幅無人機載高光譜遙感影像圖幅過小的問題。

    1  儀器設備與數據處理流程

    1.1  數據采集設備

          本次試驗地點在北京市大興區南六環外黃村鎮李村,無人機采用大疆無人機M600 Pro,在無人機平臺上搭載的是由四川雙利合譜科技有限公司自主研發的高光譜成像儀GaiaSky-mini。無人機高光譜影像獲取時間為2017年11月8日下午的12:00-14:00,天氣為晴,無人機飛行高度為400米,采用的是2*4 binning方式獲取高光譜影像(2是空間維的,4是光譜維),高光譜影像的空間分辨率約為20cm,此次飛行共獲取24景高光譜影像數據,每景高光譜影像數據代表的地面幅寬約為190米*190米,面積約為36100平方米,其中每景高光譜影像數據之間的橫向重疊率為50%,縱向重疊率為40%。

    1.2  數據的預處理與分析

           無人機高光譜影像的預處理在SpecView軟件中進行,包括鏡像變換、黑白幀校準、大氣校正。

    1.3  無人機高光譜影像拼接流程

          對消除大氣、水汽等因素影響的高光譜影像計算其波段信噪比,根據其信噪比的峰值篩選出特征波段,然后基于SIFT算法對選出的特征波段提取特征點并對特征點進行匹配,圖像拼接過程中利用經緯度信息及墨卡托投影(Mercator)糾正圖像的變形,同時利用重投影空三(Reproj)算法細化高光譜相機參數。在高光譜影像拼接之前選擇是否對拼接圖像進行勻色,*后得到拼接好的高光譜影像數據。

    1.4  高光譜影像拼接效果檢驗

           為了準確地驗證高光譜影像拼接結果的有效性,提取了拼接結果重疊區域和非拼接圖像相同經緯度的8個采樣點的光譜反射率,利用光譜角填圖(SAM)、波譜特征擬合分類法(SFF)及二進制編碼(BE)對拼接前后、是否勻色的光譜曲線進行匹配與相似性計算,得到一個0-1的匹配度分值,結果總分值越高,則相似性越好。

    2  高光譜影像拼接結果分析

    2.1 高光譜拼接圖分析

           以高光譜拼接圖像的任意三波段作為RGB(R:red,G:green, B:blue)偽彩色合成圖為例,從圖1可知,從總體上看,對圖像特征點明顯的區域,是否選擇勻色對高光譜影像的拼接無顯著差異。但在特征點不顯著區域則圖像顯示差異較大,如圖2可知,對拼接圖像是否采用勻色對高光譜影像的“圖”有較為顯著的差異,顯然在采用勻色對拼接結果的“圖”效果更好,而勻色是否對高光譜影像的“光譜”有較大的影響,則需要進一步的分析驗證。

    1  高光譜影像拼接前后效果圖(以RGB偽彩色為例)

     

    2  高光譜影像重疊區域拼接勻色與否對比

    2.2 高光譜影像拼接光譜分析

           為了進一步驗證高光譜影像拼接結果的有效性,本文提取了拼接結果重疊區域中典型地物(如植被、土壤、房屋等)的8個采樣點的光譜反射率及拼接前2景圖像對應位置的光譜反射率進行對比分析,這8個采樣點的光譜反射率曲線如圖3所示。圖3中**條光譜和**條光譜代表的是拼接前2景圖像重疊區相同位置的光譜反射率,未勻色和勻色分別代表的是未勻色和勻色拼接圖像相應位置的光譜反射率。從圖3可知,反射率較高的地物,其拼接前后的光譜重疊率較高,如第三類和第六類地物;而反射率較低的地物,其拼接前后的光譜差異較大,如第七類地物所示??傮w而言拼接前后高光譜圖像的光譜反射率曲線相似度非常高,拼接后其光譜反射率曲線保留了未拼接前高光譜圖像的反射率曲線的大部分信息。

      


    3  8個采樣點拼接前光譜曲線與拼接后光譜曲線對比分析

    2.3 高光譜影像拼接前后光譜匹配度分析

           在高光譜影像的實際應用中不僅注重空間信息更加注重其光譜信息,因此為了更為準確地驗證拼接方法的有效性,分別選用光譜角填圖(SAM)、波譜特征擬合分類法(SFF)及二進制編碼(BE)對拼接前后、是否勻色的光譜曲線進行匹配與相似性計算,得到一個0-1的匹配度分值, SAM、SFF和BE三者總分值越高,則相似性越好,具體計算結果如表1所示。

           從表1可以看出,在SAM方面,在8個采樣點中,未勻色拼接結果圖像的匹配度*小值為0.959,*大值為1,勻色拼接結果圖像的匹配度*小值為0.958,*大值為0.995;在SFF方面,在8個采樣點中,未勻色拼接結果圖像的匹配度*小值為0.881,*大值為0.999,勻色拼接結果圖像的匹配度*小值為0.807,*大值為0.995;在BE方面,在8個采樣點中,未勻色拼接結果圖像的匹配度*小值為0.942,*大值為1,勻色拼接結果圖像的匹配度*小值為0.883,*大值為1;在SAM、SFF和BE三者總分值方面,在8個采樣點中,未勻色拼接結果圖像的匹配度*小值為2.826,*大值為2.999,勻色拼接結果圖像的匹配度*小值為2.801,*大值為2.985,因此是否對高光譜圖像的拼接結果采用勻色處理,對其光譜并無太大影響。

           不同采樣點之間,當利用**條光譜作為基準對其他光譜曲線進行匹配分析時,得出的匹配結果與利用**條光譜作為基準對其他光譜曲線進行匹配分析時不一樣,這是因為兩景圖像雖然有著重疊區域,但是受空間分辨率的影響,并不能保證存在重疊區的高光譜圖像,其相應像素代表的地面物體完全相同,因此光譜曲線存在差異是正常的。為減少兩景圖像重疊區相同像素光譜的差異性,在選擇采樣點時盡量選擇周邊較為均一的地物。

    1 影像拼接前后其光譜相似度評價

    采樣點1

     

    光譜匹配度鑒定結果

    SAM

    SFF

    BE

    總分

    **條光譜

    **條光譜

    0.965

    0.883

    1

    2.848

    未平滑

    0.959

    0.901

    1

    2.859

    平滑

    0.958

    0.897

    1

    2.856

    **條光譜

    **條光譜

    0.965

    0.889

    1

    2.854

    未平滑

    0.971

    0.881

    1

    2.853

    平滑

    0.973

    0.872

    1

    2.845

    采樣點2

    **條光譜

    **條光譜

    0.987

    0.951

    0.994

    2.933

    未平滑

    0.983

    0.955

    1

    2.938

    平滑

    0.983

    0.949

    0.994

    2.927

    **條光譜

    **條光譜

    0.996

    0.993

    1

    2.989

    未平滑

    0.987

    0.930

    0.994

    2.911

    平滑

    0.970

    0.880

    0.994

    2.845

    采樣點3

    **條光譜

    **條光譜

    1

    0.999

    1

    2.999

    未平滑

    1

    0.999

    1

    2.999

    平滑

    0.995

    0.995

    1

    2.985

    **條光譜

    **條光譜

    0.995

    0.990

    1

    2.985

    未平滑

    0.995

    0.990

    1

    2.985

    平滑

    0.995

    0.990

    1

    2.985

    采樣點4

    **條光譜

    **條光譜

    1

    0.999

    1

    2.999

    未平滑

    0.978

    0.881

    0.989

    2.848

    平滑

    0.968

    0.882

    0.972

    2.821

    **條光譜

    **條光譜

    0.968

    0.886

    0.972

    2.826

    未平滑

    0.968

    0.886

    0.972

    2.826

    平滑

    0.981

    0.837

    0.983

    2.801

    采樣點5

    **條光譜

    **條光譜

    1

    0.996

    0.972

    2.968

    未平滑

    0.994

    0.991

    0.942

    2.927

    平滑

    0.994

    0.981

    0.883

    2.859

    **條光譜

    **條光譜

    0.991

    0.931

    1

    2.922

    未平滑

    0.985

    0.903

    0.994

    2.882

    平滑

    0.981

    0.890

    0.994

    2.866

    采樣點6

    **條光譜

    **條光譜

    0.991

    0.970

    1

    2.961

    未平滑

    0.991

    0.970

    1

    2.960

    平滑

    0.978

    0.927

    1

    2.905

    **條光譜

    **條光譜

    0.991

    0.971

    1

    2.961

    未平滑

    0.987

    0.956

    1

    2.944

    平滑

    0.982

    0.942

    1

    2.923

    采樣點7

    **條光譜

    **條光譜

    0.979

    0.940

    0.977

    2.896

    未平滑

    0.994

    0.981

    0.994

    2.970

    平滑

    0.990

    0.969

    0.994

    2.954

    **條光譜

    **條光譜

    0.979

    0.936

    0.977

    2.892

    未平滑

    0.989

    0.968

    0.983

    2.940

    平滑

    0.985

    0.955

    0.983

    2.923

    采樣點8

    **條光譜

    **條光譜

    0.990

    0.930

    1

    2.920

    未平滑

    0.985

    0.910

    0.983

    2.877

    平滑

    0.981

    0.899

    0.983

    2.863

    **條光譜

    **條光譜

    0.996

    0.974

    1

    2.970

    未平滑

    0.990

    0.949

    0.983

    2.923

    平滑

    0.981

    0.889

    0.983

    2.853

     

    2.4 圖像拼接效率對比

          為了驗證無人機高光譜影像的拼接效率,本文選取了兩臺筆記本的電腦,分別是Dell7520和ThinkPad T440P對24景、50景、120景、500景無人機高光譜影像進行拼接,如表2所示。研究結果表明,硬件配置較好的DeLL7520拼接效率遠遠高于硬件配置較差的ThinkPad T440P,在處理24景無人機高光譜影像拼接時,DeLL7520比ThinkPad T440P處理速度快4個小時;在處理50景無人機高光譜影像拼接時,DeLL7520比ThinkPad T440P處理速度快7.7個小時;在處理120景和500景無人機高光譜影像時,ThinkPad T440P處理速度顯然更慢,甚至出現筆記本卡死/藍屏重啟,而DELL7520則正常拼接。

    2  硬件配置及圖像拼接效率對比

    筆記本

    DELL7520

    ThinkPad T440P

    硬盤配置

    CPU

    i7-7700HQ

    I7-4710MQ

    內存

    64GB

    16GB

    硬盤

    SSD

    SSD

    顯卡

    NVIDIA Quadro M2200,4GB

    NVIDIA GeForce GT 730MIntel GMA HD 4600, 1GB

    效率對比

    24

    1小時

    5小時

    50

    1.8小時

    9.5小時

    120

    3.5小時

    20小時,進程1/3

    500

    8.5小時

    筆記本卡死

    3  結論

          本文對消除大氣、水汽等因素影響的高光譜影像計算其波段信噪比,并根據其信噪比的峰值篩選出特征波段,利用SIFT算法對選出的特征波段提取特征點并對特征點進行匹配,墨卡托投影(Mercator)糾正圖像的變形以及重投影空三(Reproj)算法細化高光譜相機參數的方法對無人機高光譜影像進行自動拼接并對拼接結果進行勻色,同時運用SAM、SFF和BE光譜匹配算法驗證了高光譜影像拼接算法的可行性。研究表明本文提出的無人機高光譜影像拼接算法解決了當前單幅無人機載高光譜影像圖幅過小的問題,且對無控制點的無人機載內置推掃式的高光譜遙感影像可實現自動拼接,且拼接效果好、精度高、光譜畸變小,研究結果為其他無人機載高光譜遙感影像的自動拼接提供借鑒,同時無人機高光譜影像的拼接結果可應用于大范圍的高光譜遙感影像分類與識別、土地利用/覆蓋分類、精細農業、環保、礦產礦物勘測等多種領域中。

     

    本文參考文獻:黃宇,陳興海,劉業林,等.無人機高光譜內置推掃影像快速拼接方法[J].測繪地理信息,2019,44(05):24-28.

     

    川公網安備 51011202000202號

    处破学生毛都没长齐在线播放
  • <nav id="ai48w"></nav>
    <menu id="ai48w"></menu>
  • <dd id="ai48w"></dd>